Stability of noncharacteristic boundary layers in the standing-shock limit

نویسنده

  • Kevin Zumbrun
چکیده

We investigate oneand multi-dimensional stability of noncharacteristic boundary layers in the limit approaching a standing planar shock wave Ū(x1), x1 > 0, obtaining necessary conditions of (i) weak stability of the limiting shock, (ii) weak stability of the constant layer u ≡ U− := limz→−∞ Ū(z), and (iii) nonnegativity of a modified Lopatinski determinant similar to that of the inviscid shock case. For Lax 1-shocks, we obtain equally simple sufficient conditions; for p-shocks, p > 1, the situation appears to be more complicated. Using these results, we determine stability of certain isentropic and full gas dynamical boundary-layers, generalizing earlier work of Serre–Zumbrun and Costanzino–Humphreys–Nguyen–Zumbrun.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Stability of Noncharacteristic Isentropic Navier–Stokes Boundary Layers

Building on the work of Barker, Humpherys, Lafitte, Rudd, and Zumbrun in the shock wave case, we study stability of compressive, or shock-like, boundary layers of the isentropic compressible Navier–Stokes equations with γ -law pressure by a combination of asymptotic ODE estimates and numerical Evans function computations. Our analytical results include convergence of the Evans function in the s...

متن کامل

Long-time Stability of Large-amplitude Noncharacteristic Boundary Layers for Hyperbolic–parabolic Systems

Extending investigations of Yarahmadian and Zumbrun in the strictly parabolic case, we study time-asymptotic stability of arbitrary (possibly large) amplitude noncharacteristic boundary layers of a class of hyperbolic-parabolic systems including the Navier–Stokes equations of compressible gasand magnetohydrodynamics, establishing that linear and nonlinear stability are both equivalent to an Eva...

متن کامل

Long-time Stability of Noncharacteristic Viscous Boundary Layers

We report our results on long-time stability of multi–dimensional noncharacteristic boundary layers of a class of hyperbolic–parabolic systems including the compressible Navier–Stokes equations with inflow [outflow] boundary conditions, under the assumption of strong spectral, or uniform Evans, stability. Evans stability has been verified for small-amplitude layers by Guès, Métivier, Williams, ...

متن کامل

Existence and stability of noncharacteristic boundary-layers for the compressible Navier-Stokes and viscous MHD equations

For a general class of hyperbolic-parabolic systems including the compressible NavierStokes and compressible MHD equations, we prove existence and stability of noncharacteristic viscous boundary layers for a variety of boundary conditions including classical Navier-Stokes boundary conditions. Our first main result, using the abstract framework established by the authors in the companion work [G...

متن کامل

Pointwise Green Function Bounds and Long-Time Stability of Large-Amplitude Noncharacteristic Boundary Layers

Using pointwise semigroup techniques of Zumbrun–Howard and Mascia–Zumbrun, we obtain sharp global pointwise Green function bounds for noncharacteristic boundary layers of arbitrary amplitude. These estimates allow us to analyze linearized and nonlinearized stability of noncharacteristic boundary layers of one-dimensional systems of conservation laws, showing that both are equivalent to a numeri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008